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Abstract

We performed a genome-wide association meta-analysis of generalised anxiety symptom
severity in 696,563 individuals of European ancestry from 14 cohorts. We identified 82
independent genome-wide significant variants within 76 loci, 41 of which were novel for
anxiety. SNP-based heritability was 5.9% (SE = 0.19%). Polygenic scores were significantly
associated with anxiety symptom severity and disorder in European, African, and South Asian
ancestry samples (r’=1.2%-3.4%). Significant genetic correlations were estimated with
numerous mental and physical health traits, including case-control anxiety, neuroticism and
depression (rg=0.71-0.86), irritable bowel syndrome (r,=0.57), coronary artery disease,
endometriosis, and migraine (rg=0.20-0.27). Gene-based and pathway analyses implicated
synaptic and axonal processes, with enriched expression in the brain. These findings highlight

the additional value of a dimensional approach in anxiety genetics.
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Introduction

Anxiety disorders are the most prevalent mental health conditions worldwide® and rates are
rising”". Anxiety is associated with reduced quality of life>, elevated mortality®’, and is

1**2 and physical™ health conditions, from irritable

frequently comorbid with other menta
bowel syndrome to cancer. When co-occurring with other conditions, anxiety symptoms can
exert an independent and sometimes greater impact on quality of life and functioning than the

primary diagnosis®, as has been reported in autism™* and bipolar disorder™.

Twin and family studies estimate the heritability of anxiety disorders at 20-60%"3, with
measures capturing stable anxiety typically showing higher heritability*®. Early case-control
genome-wide association studies (GWAS), which aggregated across anxiety subtypes, identified
17719 ‘More recent large-scale efforts, employing a range of analytical

. The largest GWAS of anxiety

a handful of risk loci
approaches, have reported between 14 and 51 associated loci’®??
cases to date, also by the Anxiety Disorders Working Group of the Psychiatric Genomics

Consortium (PGC-ANX), identified 58 independent loci from over 120,000 cases®®. Across these
studies, single nucleotide polymorphism (SNP)-based heritability estimates ranged from 5% to

10%20,22,23

Fear and worry serve an evolutionary function by promoting vigilance and caution in response
to potential threats®. Variation in threat sensitivity across individuals may be adaptive at the
group level, and as such, anxiety symptoms exist in the population along a continuum of
frequency and severity. Clinical anxiety represents a practical threshold at the upper extreme of
this distribution, based on levels of distress and functional impairment. GWAS of dimensional
anxiety using quantitative symptom scores capture genetic variation across the full phenotypic
range, not only at clinical thresholds. This approach can offer greater statistical power” and a
more comprehensive representation of genetics influences on anxiety traits. The degree of
genetic overlap between dimensional anxiety symptom severity and disorder status has only
just begun to be explored. A GWAS of a two-item anxiety scale in the European-ancestry
subsample of the Million Veteran Program (MVP) identified five significant loci’®, and
moderate-to-strong genetic correlations with lifetime anxiety disorder (r, = 0.59 - 0.87"°°).
However, the brevity of the measure limited the potential to comprehensively capture

phenotypic variance. Additional support for shared genetic influences across the anxiety
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continuum, including above and below diagnostically relevant thresholds, comes from the UK
Biobank, where high genetic correlations were observed between mild, moderate, and severe
anxiety symptom case-control groupings (r; = 0.76 - 0.98"%). Among individuals with lifetime
anxiety or depression, anxiety symptom severity was also genetically correlated with functional

impairment ratings (rg = 0.79”’), which have clinical relevance.

These findings provide preliminary evidence that a well-powered GWAS of dimensional anxiety
would identify variants relevant to both symptom severity and clinically defined anxiety.
Besides the two-item MVP study, previous dimensional anxiety GWAS have incorporated other

psychiatric or personality traits to maximise statistical power®®*

, resulting in findings relating
to a broader construct than anxiety symptoms specifically. To address this, we performed the
largest genome-wide association meta-analysis of generalised anxiety disorder (GAD) symptom
severity to date. We analysed data from 696,563 individuals of inferred European ancestry
across 14 cohorts from PGC-ANX. Most cohorts used the Generalised Anxiety Disorder 7-item
scale (GAD-7) or conceptually similar brief self-report measures of recent GAD symptoms. In
addition to identifying associated loci, we performed variant- and gene-level investigations,
estimated genetic correlations with relevant traits, and evaluated polygenic score prediction in

independent samples of European, African, and South Asian ancestry.

Results

Genome-wide association meta-analysis

We performed a genome-wide association meta-analysis of GAD symptom severity in 696,563
individuals of European ancestry across 14 cohorts from eight countries (see Tables S1-S3 for
cohort, phenotype, and GWAS details). The analysis identified 82 independent genome-wide
significant variants (p < 5x10®) across 76 loci (Fig 1, Fig S1, Table S4). The top signal came from a
locus within an intron of PCLO on chromosome 7 (lead SNP rs1476548, p = 3.7x10'15, beta = -
0.014), followed by an intergenic locus near the long noncoding RNA RP4-598G3.1 on
chromosome 1 (lead SNP rs7546305, p = 4.0 x 10, beta = -0.014).
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Of the 76 loci, 17 had no prior associations with internalising trait GWAS, including neuroticism,
anxiety, or depression, at any variant in linkage disequilibrium (LD) with the lead SNP (r’>0.1;
Methods, Table S5a). Forty-one loci were novel for anxiety specifically, measured either as a
diagnosis or symptom severity phenotype. Of the 58 loci previously identified in the PGC-ANX
anxiety disorder study?, 19 (33%) reached genome-wide significance in the present analysis,
and a further 33 (57%) showed nominal significance (p < 0.05) in the same direction (Table S5b).
The remaining loci were non-significantly associated but also consistent in directionality. Nine
of the 14 cohorts included here also contributed to the PGC-ANX anxiety disorders study,
although cohort sample composition somewhat differed due to the availability of dimensional
versus diagnostic information. Power calculations® confirmed increased power in the present

analysis relative to the anxiety disorder study (Table S6).

Fig. 1| Manhattan plot of the genome-wide association meta-analysis of generalised anxiety
symptom severity (N = 696,563). Variants are represented as points, plotted against their
respective genomic location and association significance value. The red line indicates the
genome-wide significant threshold (p < 5x107).
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Heterogeneity tests revealed no significant differences in SNP effects across cohorts (p < 5x10°
%). Genetic correlations between sufficiently powered cohorts, estimated using linkage
disequilibrium score regression (LDSC), ranged from 0.64 to 0.97 (Table S7). As a sensitivity
analysis, we categorised cohorts by GAD symptom severity measure (e.g. GAD-7; six subgroups)
and by ascertainment method (‘community’ and ‘clinical’ subgroups) (Table S2). Subgroup

meta-analyses were performed as per the main analysis, and genetic correlations between


https://doi.org/10.1101/2025.07.10.25331321

medRxiv preprint doi: https://doi.org/10.1101/2025.07.10.25331321; this version posted July 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

subgroups were estimated with LDSC. While most subgroup comparisons were underpowered,
including that for the ascertainment method, the genetic correlation between the two most

frequently used measures, GAD-7 and GAD-2, was high (rg = 0.86, SE = 0.031; Table S8).

SNP-based heritability and genetic correlations with external traits

The SNP-based heritability estimate from SBayesRC was 5.92% (SE = 0.189%). SBayesRC was
selected due to the known under-estimation of heritability from LDSC*'. LDSC* indicated that
genomic inflation was largely attributable to polygenicity (intercept = 1.03, SE = 0.010). To
characterise the broader genetic architecture of GAD symptoms, we used LDSC*® to estimate
genetic correlations with 105 traits spanning mental and physical health, personality, cognitive,
and socioeconomic domains (Table S9). Following Bonferroni correction (p < 4.76 x10™), 63
associations remained significant (Fig 2; four traits represented by multiple studies were

excluded).

The strongest correlations were observed with dimensional internalising traits including
neuroticism, depressive symptoms, and a genetic anxiety factor (r; = 0.84 - 0.86), as well as with
case-control phenotypes for anxiety and depression (r; = 0.71 - 0.80). Moderate-to-strong
estimates were also found for self-reported tiredness (rg = 0.74), insomnia (rg = 0.49), irritable
bowel syndrome (rg = 0.57), and chronic pain (rg = 0.56). Negative correlations were observed
with socioeconomic status indicators including household income (rg = -0.43). Smaller but
significant correlations were identified with coronary artery disease, endometriosis,
hypothyroidism, and migraine (ry = 0.20 - 0.27). Most other associations with physical traits and
illnesses were weaker and included negative correlations with lung function, resting heart rate,
and intracranial volume variation, and positive correlations with rheumatoid arthritis and atopic

dermatitis (absolute rg = 0.06 - 0.13).
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Fig.2 | Genetic correlations between generalised anxiety symptom severity and a range of traits from
existing genome-wide associations studies, estimated with LDSC.

All significant at a Bonferroni-corrected threshold of p < 4.76 x10™. Bars represent 95% confidence
intervals. PTSD = post-traumatic stress disorder, MDD = major depressive disorder, OCD = obsessive-
compulsive disorder, ADHD = attention deficit/hyperactivity disorder, BMI = adult body mass index, SES

= socioeconomic status. Forced expiratory volume is a measure of lung function.
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Polygenic risk scores

To evaluate the within- and cross-ancestry generalisability of our GWAS findings, we generated
a polygenic risk score (PRS) for GAD symptom severity using SBayesRC** and tested its
association with both dimensional and case-control anxiety outcomes in independent samples
across ancestry groups (Table S10). The PRS significantly explained 2.8% of the variance in
dimensional anxiety in an independent European ancestry sample (p = 4.2 x 10?°), 1.4% in an
African ancestry sample (p = 3.9 x 10°), and 1.2% in a South Asian ancestry sample (p = 2.9 x 10°
®). For case-control anxiety, assuming 20% prevalence, the PRS explained 3.4% (p = 6.2 x 10°®°) of
the variance on the liability scale in a European ancestry sample, 2.6% (p = 1.8 x 10°) in an

African ancestry sample, and 2.6% (p = 6.9 x 10™) in a South Asian ancestry sample.

Positional and functional annotation

Functionally-informed fine-mapping using PolyFun (v1.0.0)* and SuSiE (v0.11.92)* identified
four putative causal variants with posterior inclusion probabilities (PIP) > 0.95. Two of these
were index variants for genome-wide significant loci: rs2392289 at locus 31 (PIP = 0.969) and
rs72676302 at locus 59 (PIP = 0.988). The remaining two variants were located in loci that did
not reach genome-wide significance. One variant, rs72676302, had a high Combined
Annotation Dependent Depletion (CADD) score of 19.78, suggesting a deleterious effect (above
the suggested threshold of 12.37%’), although there was little biological evidence that it is
within a regulatory element (regulomeDB score = 5). Additionally, we identified 27 small

credible causal sets (< 10 variants each) that cumulatively met the PIP threshold (Table S11).

SNP-level gene annotation was performed using FUMA (v1.6.5°%) based on positional,
expression quantitative trait loci (eQTL), and chromatin interaction (Hi-C) mappings (Table $12).
We identified genes annotated by more than one method, with this convergence providing
greater support for their involvement. This approach highlighted TMEM1068, which has

181923 3nd also with depression®. In addition, multiple

repeatedly been associated with anxiety
genes were identified that have previously been implicated in depression (e.g., SORCS3, ERBBA4,
GRM?7, VRK2, DCC, LRFN5, PCLO) and schizophrenia (e.g., ERBB4, VRK2). PCLO, overlapping our
top locus, was also annotated by eQTL data. MAD1L1, although implicated only by positional
mapping in our analysis, has been repeatedly associated with anxiety phenotypes in previous

GWAS ™% further supporting its relevance. While detailed functional information was
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limited for many of the mapped genes, several are thought to play roles in key
neurotransmitter systems, including glutamatergic (GRM7, HOMER1), GABAergic (ERBB4), and
dopaminergic (DRD1) signalling.

Gene-based associations and enrichment

Gene-based association analysis was conducted using MAGMA®, which aggregates trait-SNP
associations across all SNPs within a gene while accounting for LD. In total, 200 genes across 82
independent loci surpassed the Bonferroni-corrected significance threshold (p < 2.5 x 10°%;

Table S13). The top associated gene was PCLO (p = 2.5 x 10™%%), mirroring the SNP-based results.

To assess biological pathways significantly enriched for associations with GAD symptom
severity, we performed pathway analysis in MAGMA with predefined gene sets (MsigDB
v2023.1.Hs*; curated and gene ontology terms; Table S14). Three gene sets passed Bonferroni
correction (p < 2.9 x 10°°): postsynaptic membrane (272 genes, p = 4.3 x 10°®), synaptic
membrane (384 genes, p = 1.1 x 10”), and axon (627 genes, p = 5.4 x 10”). These results were
unaffected by the exclusion of the MHC region, though the number of genes per set slightly

decreased.

Gene-tissue expression analysis was conducted using catalogues of gene expression levels
across different human tissues (Figs S2-5), with a Bonferroni correction applied within each
tissue set. Among brain samples from 11 developmental stages (BrainSpan), only prenatal
samples were significant (p = 6.6 x 10° and 4.0 x 10™). In adult tissues (GTEx v8*), significant
enrichment was observed in brain (p = 9.9 x 10°) and pituitary (p = 9.5 x 10”) tissues. Analysis
of more specific tissue types revealed enrichment in 11 brain regions, most strongly in the
cortex, frontal cortex, cerebellum, anterior cingulate cortex, and nucleus accumbens (all p < 9.3
x 10* Table S15).

Drug targets

To explore therapeutic relevance, we ran DrugTargetor (v1.3*¥) to identify drug priorities with
potential utility for clinical anxiety, based on their relevance for GAD symptom severity. Of the
1500 drugs tested, we identified significant enrichment of anxiety associations for four targets
of afatinib, a lung cancer growth inhibitor (EGFR, ERBB2, ERBB3, ERBB4; Table $16). This

10
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enrichment was primarily driven by the association with ERBB4. At the drug class level, we
observed significant associations for Anatomical Therapeutic Chemical (ATC) classification NO6
'psychoanaleptics’, including antidepressants, and NO2A ‘opioids’ (Bonferroni-adjusted p-value

< 0.05; Table $17). Both classes include drugs that have been used clinically to treat anxiety**.

Discussion

In this genome-wide association meta-analysis of 696,563 individuals from 14 cohorts, we
identified 82 genome-wide significant variants across 76 loci associated with dimensional
measures of GAD symptom severity. This represents the largest number of genetic associations
reported to date with anxiety symptoms. Approximately half of the identified loci replicated

1972345 \vhile the remainder were novel.

associations reported in previous anxiety GWAS
The strongest association was estimated for rs1476548 within PCLO, which was also implicated
through eQTL mapping and gene-based association testing. PCLO encodes a protein involved in
regulating presynaptic structure and neurotransmitter release. This gene has long been of
interest in major depressive disorder (MDD™), with recent evidence also linking it to anxiety

2023 Another gene of interest from our analysis was SORCS3, which was also

disorders
supported by multiple lines of evidence in the recent PGC-ANX case-control anxiety GWAS?®,
SORCS3 plays a role in postsynaptic functioning and glutamate receptor regulation, particularly
in the hippocampus”. It has been linked to memory and learning processes, specifically
synaptic depression and fear extinction®®, as well as mental health and neurodevelopmental
conditions including MDD, Tourette syndrome, attention-deficit/hyperactivity disorder, and

autism**°,

In contrast to traditional case-control phenotyping, which aims to maximise clinical specificity
through diagnostic thresholds, our approach leveraged the full spectrum of symptom
variability, increasing power for discovery51 and capturing genetic risk relevant to both
subclinical and clinical presentations. The key differences between clinical diagnoses and
symptom severity measures relate to the presence of distress and impairment, and symptom
duration. While subclinical symptoms can still cause distress and impairment, this is not always

true for lower levels of anxiety severity, potentially contributing to some diagnosis-specific

11
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genetic variance. Similarly, diagnostic tools often assess lifetime occurrence and require
symptoms to be present for a minimum period of time (six months for GAD), whereas symptom
severity scales typically capture recent experiences (e.g. past two weeks), introducing greater
susceptibility to transient fluctuations and measurement noise. Consistent with this, GWAS of
depression symptom severity typically yield lower SNP-based heritability estimates than case-

control analyses>*™>*

. We aimed to partially address and control for temporal fluctuations and
better approximate a stable underlying trait'® by incorporating assessments from multiple
timepoints into our analysis, where available. Our SNP-based heritability estimate (5.2%) aligns

with previous GWAS of GAD symptom severity*®*®

but remains lower than liability scale
estimates from case-control anxiety meta-analyses®’. Despite this, the strong genetic
correlation observed between our phenotype and case-control anxiety suggests that GAD
symptom severity captures much of the same genetic risk. This finding is consistent with a
recent analysis of obsessive compulsive symptoms™ . Dimensional, symptom-based approaches
may be particularly well-suited to genetic studies of anxiety, given the high burden of anxiety
symptoms observed across other mental health conditions®**. In this context, efforts to isolate
‘pure’ anxiety cases may be both methodologically challenging and reflect an unusual clinical

phenotype that is invalid for most individuals with anxiety.

There was a broad range of significant genetic correlations across both mental and physical
health conditions, mirroring the frequent co-occurrence with anxiety symptoms and pleiotropic
effects. A strong genetic correlation was observed with neuroticism, a well-established risk
factor for anxiety56, though this may also reflect conceptual and item-level overlap between the
measures used. Many of the observed correlations align with findings from an anxiety factor
GWAS?, including strong associations with irritable bowel syndrome and chronic pain, and a
moderate association with migraine. These genetic correlations do not necessarily imply
horizontal pleiotropy but could arise from the experience of these conditions eliciting

uncertainty and worry, thereby contributing to anxiety.

Polygenic scores derived from our genome-wide association meta-analysis demonstrated
within- and cross-ancestry generalisability, significantly explaining 1.2% to 2.8% of the variance
in GAD symptom severity in European, African, and South Asian ancestry samples. This supports
a degree of shared genetic influence across these populations, although ancestry-specific

modelling remains necessary for a more robust investigation. Across these ancestries, the PRS
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also accounted for 2.5% to 3.5% of the variance in case-control anxiety on the liability scale.
While this exceeds the 0.5% to 2.3% range reported in the PGC-ANX case-control analysisza,
direct comparisons are limited by methodological differences in PRS construction and target
sample composition. Nonetheless, these findings provide additional evidence that dimensional

phenotyping can effectively capture genetic signal relevant to clinical anxiety.

The GAD symptom severity measures and ascertainment methods varied across contributing
cohorts, although most assessed symptoms using the GAD-7. While widely adopted across
clinical and research contexts, the GAD-7 does not comprehensively assess all DSM-5 GAD
symptoms - omitting sleep and concentration problems - and is not designed to capture
symptoms of fear-based anxiety (i.e. phobias, social anxiety disorder) or panic disorder. This
limits the generalisability of our findings across anxiety disorders, particularly in light of
evidence for partially distinct phenotypic and genetic contributions to GAD compared with fear-

based disorders>’®

. Expanding future studies to incorporate a broader range of anxiety
symptom measures will enable more robust, transdiagnostic translation of findings. Our
subgroup analyses based on measure and ascertainment method, were largely underpowered
to reliably estimate SNP-based heritability or correlations. Although sufficiently powered
comparisons indicated high genetic overlap, we cannot be certain that all cohorts captured the
same underlying genetic architecture. While population-based cohorts allow assessment of the
full range of symptoms, the measures used typically better distinguish variation at the upper
end of the distribution. This results in highly skewed symptom severity scores, as most
participants report few or no symptoms, whereas individuals in clinical cohorts typically report
more symptoms. Combining these sources introduces some heterogeneity but can help yield a
more normally distributed phenotype for GWAS analysis, which may have improved statistical

power for detecting associations in our study.

Our dimensional GWAS of GAD symptom severity identified more genome-wide significant loci
than a slightly larger and mostly overlapping case-control anxiety study (N = 852,222; 122,341
cases)”, with many loci replicated across the two methods. This aligns with expectations under
the liability-threshold model when considering common conditions such as anxiety, whereby
dimensional traits generally offer greater statistical power than case-control designs of equal
sample size>". Beyond identifying the largest number of anxiety-associated loci to date, our

results implicate key neurobiological pathways, including synaptic function and
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neurotransmission, and notable genes such as PCLO and SORCS3. These findings demonstrate
that a dimensional anxiety phenotype can reveal biologically meaningful signals that
complements insights from case-control designs. Clinically ascertained samples remain
essential for identifying disorder-specific biology and mapping genetic risk to diagnostic
presentations, however, obtaining clinical cases at sufficient scale for binary genome-wide
analyses is challenging. Although electronic health records offer an efficient option, these are
limited to individuals seeking and receiving medical attention. Dimensional, symptom-based
approaches within biobanks and population studies therefore offer a promising scalable
alternative for advancing the field of anxiety genetics. Moving forward, the combination of
these with deeply phenotyped clinical cohorts will be crucial for translating genetic insights into
diagnostic and therapeutic advances. Together, these approaches can elucidate the biological
continuum of anxiety, from healthy stress responses to debilitating disorder. Given the high and
rising rates of anxiety, especially in young adults, it is more important than ever to improve our
ability to identify and understand sources of risk. Despite its public health impact, progress in
anxiety genetics lags behind other major mental health conditions. We hope our findings
encourage a new wave of genome-wide investigations leveraging existing but potentially
underutilised anxiety severity data in genotyped cohorts, accelerating our progress in

understanding the genetic architecture of anxiety.
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Methods

Participants and measures

We meta-analysed data from 14 international cohorts (N = 696,563) within PGC-ANX that had
assessed anxiety using dimensional measures. The majority of the sample (70%) had completed
the GAD-7, or closely related brief self-report measures assessing recent anxiety symptoms. The
remaining 30% used other brief self-report anxiety scales (Table S1), each available in at least
3,000 individuals. We analysed total sum scores, with higher scores indicating greater severity
of symptoms. If participants were missing data on <25% of measure items, the missing scores
were imputed with the participant’s mean score of the other items. Participants with >25%
missing data were excluded from analysis. Several cohorts had assessed anxiety symptoms on
two or more occasions. Longitudinal twin studies have shown that symptom stability is

primarily driven by genetic factors™>®°

and stability extracted from repeated assessments
yields higher heritability estimates than single timepoints'®. For cohorts with anxiety
assessments from three or more timepoints (12% of the sample), a latent factor was created in
R with the package lavaan®, the predict function and an ML estimator. For cohorts with two
timepoints (45%), a mean score was calculated. Scores were standardised to have a mean of
zero and a standard deviation of one. Given the high comorbidity of anxiety and other mental
health conditions, no additional exclusions were applied beyond those defined by each study.
For two cohorts - GLAD+ and the UK Biobank - individual-level data were merged prior to the
GWAS. Participants from clinical cohorts had been recruited based on a lifetime history of

depression or anxiety, as assessed by self-reported diagnostic questionnaires.

Meta-analysis

Table S3 provides details of the studies that contributed to this meta-analysis, which were:
Australian Genetics of Depression Study (AGDS)%, Avon Longitudinal Study of Parents and
Children (ALSPAC)63’64, Colaus| PsyCoLauseS, Estonian Biobank66, Generation Scotland67, NIHR
Bioresource Genetic Links to Anxiety and Depression Study (GLAD+%®), Lifelines®®, MEGA
TRR58’°, Million Veteran Program”®, Norwegian Mother, Father, and Child Cohort Study’’,
Providing Tools for Effective Care and Treatment of Anxiety Disorders (PROTECT—AD72), Twins
Early Development Study (TEDS)”, Tracking Adolescents’ Individual Lives’ Survey (TRAILS™), and

UK Biobank’. Each cohort performed genotyping using microarray platforms and imputed
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genotypes using ancestry matched panels, primarily Haplotype Reference Consortium’®.
Rigorous quality control procedures were applied, including filters on sample and variant call
rates, sex concordance, and excessive heterozygosity (full details in Table S3). Alongside 13
cohorts, we included one set of pre-existing summary statistics from an analysis in the MVP,
obtained through the database of Genotypes and Phenotypes (dbGaP; phs001672). Each group
performed a genome-wide association analysis of GAD symptom severity, with most adopting a
mixed linear model approach and retaining related individuals. Where applicable, covariates
such as ancestry principal components and genotyping batch were included. All resulting
summary statistics were on the GRCh37 genome assembly (b37/Hg19). Prior to meta-analysis,
variant-level quality control was performed across the summary statistics, excluding those with
minor allele frequency (MAF) <1% or imputation accuracy score <0.6. The meta-analysis was
conducted in METAL”’ using an inverse-variance weighted, standard-error based approach. A
total of 7,765,325 autosomal SNPs were included. X-chromosome data was analysed from six

cohorts, contributing 241,754 variants.

Heterogeneity across cohorts was assessed by inspecting the heterogeneity p-values from
METAL. We attempted to estimate genetic correlations between contributing cohorts using
LDSC* but most pairwise comparisons were not sufficiently powered (i.e. heritability z-scores

78 .
<4 for one or both cohorts’”) to draw conclusions.

The inclusion of clinical alongside community-based cohorts increased our statistical power by
offering greater representation across the full range of the anxiety symptom severity, as
evidenced in a recent depression GWAS’®. However, due to the risk of bias or confounding from
differences in study design and phenotyping we performed subgroup meta-analyses stratified
by anxiety measure and excluding clinical cohorts (Table S2). Meta-analyses of the measure and
ascertainment subgroups were also performed in METAL, and genetic correlations between the

groups were estimated using LDSC>>.

To identify LD independent significant SNPs and loci, clumping was performed in FUMA®®
(v1.6.5). The r’ threshold for independent significant SNPs was 0.1, and for lead SNPs was 0.05,
within a 500kb window. Genome-wide significance was defined using the conventional
threshold (p < 5x107%).
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To determine the novelty of our results, we cross-referenced significant loci with published trait
associations from the GWAS Catalog® using LDTrait®, applying an r” threshold of > 0.1 and a
500kb window. Novelty was strictly defined as having no prior associations with internalising
traits including anxiety, depression, neuroticism, and worry. To supplement this, we compared
our results with recent anxiety and depression studies not yet available in the GWAS

20222379 oyerlapping significant loci were identified with BEDtools®” and LD assessed

Catalog
using a threshold of r*>0.1. The investigation of novelty also revealed the extent to which our
results replicated previous findings. We also determined novelty specifically for anxiety,
whether assessed as symptom severity or a case-control phenotype. Of the 14 cohorts in our
meta-analysis, most overlap with prior case-control anxiety meta-analyses, with the exception
of GLAD+, Lifelines, ProtectAD, TEDS, and MEGA (approximate N = 110,000). In some instances,
the cohort sample composition differs due to the availability of dimensional versus diagnostic

information.

SNP-based heritability and genetic correlations with external traits

We estimated SNP-based heritability via SBayesRC>*. This provided an estimate of the
proportion of variance in dimensional anxiety attributable to variation in the common SNPs
present in this meta-analysis. We used LDSC>” to inspect the genomic inflation factor (Asc) and
intercept to evaluate the contribution of potential confounding relative to polygenicity. Genetic
correlations were also computed using LDSC with 105 GWAS summary statistics covering a

broad range of phenotypes and applying a Bonferroni-corrected p-value threshold of 4.76x10™.

Polygenic risk scores

To evaluate the within and cross-ancestry validity of our GWAS, we calculated GAD symptom
severity polygenic risk scores (PRS) in independent samples from the UK Biobank” and
Prospective Imaging Study of Ageing (PISA)®. We then performed regressions between our PRS
and dimensional anxiety, using GAD-7 scores, as well as case-control anxiety, as defined by a
self-reported diagnostic questionnaire or self-report of a diagnosis from a health professional.
Specifically, we used SBayesRC*>* to calculate PRS in European, African, and South-Asian
ancestry samples, excluding related individuals. SBayesRC is a Bayesian regression method that
uses GWAS summary statistics to estimate SNP effect sizes while accounting for LD and

polygenic architecture. It extends the SBayesR framework by incorporating functional
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annotations or prior biological information, improving the detection of likely causal variants and
enhancing predictive accuracy for complex traits. We conducted linear regressions to assess the
variance explained in GAD symptom severity by the PRS in each sample (European N = 3,452;
African N = 1,581; South Asian N = 1,813). For case-control status, we performed logistic
regressions and calculated Nagelkerke’s R’ for our PRS, assuming a population prevalence of
20% (European total n = 3107, case n = 407; African total n = 1,303, case n = 218; South Asian
total n = 1,549, case n = 265). All regressions included the first 10 ancestry-specific PCs and

genotyping batch as covariates.

Positional and functional annotation

We used PolyFun® to estimate per-SNP heritabilities, leveraging a regularised extension of
stratified-LDSC (s-LDSC) applied to the v.2.2.UKB baseline-LF model annotations, which captures
heritability enrichment related to allele frequency, LD and variant function. These prior causal
estimates were then used for fine-mapping in SuSiE*®, limiting to a maximum of one causal SNP
per locus. We extracted annotations at a Posterior Inclusion Probability (PIP) threshold of > 0.95
and created credible causal sets containing the minimum set of ranked variants that
cumulatively met this threshold. Unlike standard definitions of credible causal sets in SuSIiE, we
did not require a minimum pairwise r> between variants in a set, as the PolyFun + SuSiE pipeline

does not incorporate LD estimates.

We performed SNP-level gene annotation using FUMA®® (v1.6.5), integrating three
complementary methods: positional mapping (based on physical proximity to genes),
expression quantitative trait loci (eQTL) mapping (linking variants to gene expression), and
chromatin interaction mapping (using Hi-C data to identify regulatory interactions). eQTL
mapping used significant SNP-gene pairs and eQTLs from the brain tissue datasets GTEx v8
Brain®” (13 regions) and BRAINEAC™ (10 regions), and average expressions across these,
applying a false discovery rate (FDR) threshold of < 0.05. Chromatin interaction mapping
employed Hi-C brain tissue data (dorso-lateral prefrontal cortex, hippocampus, left and right
ventricles)® and adult and foetal cortex®®, with an FDR threshold of p < 1x10®. These methods
differ in their underlying biological rationale and may implicate different genes. Genes
identified by two or more mapping approaches were therefore highlighted, as convergence

across the methods increased our confidence in the potential functional relevance of a gene.
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Gene-based associations and enrichment

Gene-based association, gene-set, and gene-tissue expression enrichment analyses were
performed in MAGMA® (v1.08) via FUMA® (v1.6.5). These analyses aimed to identify genes
associated with GAD symptom severity, biological pathways enriched for associated genes, and
relevant tissues where genes are preferentially expressed, offering insight into the potential
biological mechanisms underlying our findings. For gene-based associations, we tested 19,954
genes, applying a Bonferroni-corrected significance threshold of p < 2.51x10°°. SNPs were
mapped to genes using a 35kb upstream and 10kb downstream window. Gene-set analyses
were performed using 6,494 curated gene sets (‘c2.all’) and 10,529 gene-ontology (GO) terms
(‘c5.bp’, ‘c5.cc’ and ‘c5.mf’) from the Molecular Signatures Database (MSigDB*'; v2023.1.Hs).
Significance was determined by a Bonferroni-corrected threshold of p < 2.94x10°°. For tissue
enrichment we tested relationships between trait-associated genes and gene expression in
human tissues, using data from BrainSpan (brain samples from 11 general developmental

stages and 29 specified ages) and GTEx v8 (covering 30 general and 54 specific tissue types).

Drug targets

We examined whether genes associated with GAD symptom severity were associated with
individual drugs and drug classes using the DrugTargetor® method (November 2020 update).
DrugTargetor integrates MAGMA gene-level association results with curated drug-gene
interaction databases (ChEMBL®"*® and DGIdb®°). We used MAGMA (v1.10) to prioritise
associated genes within windows 35kb upstream and 10kb downstream. We hypothesised drug
action within the nervous system, a maximum of 1500 unique drugs and 200 drug classes. To
assess the enrichment of drug classes we calculated the area under the enrichment curve
(AUC), where 50% indicates random enrichment and 100% optimal enrichment and AUC

significance was assessed using one-sided Wilcoxon-Mann-Whitney tests.
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Data and code availability

Summary statistics will be made available on the PGC data-download page

(https://pgc.unc.edu/for-researchers/download-result). Ahead of publication we will make

analytic code available via Github.
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