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Abstract 

We performed a genome-wide association meta-analysis of generalised anxiety symptom 

severity in 696,563 individuals of European ancestry from 14 cohorts. We identified 82 

independent genome-wide significant variants within 76 loci, 41 of which were novel for 

anxiety. SNP-based heritability was 5.9% (SE = 0.19%). Polygenic scores were significantly 

associated with anxiety symptom severity and disorder in European, African, and South Asian 

ancestry samples (r2=1.2%-3.4%). Significant genetic correlations were estimated with 

numerous mental and physical health traits, including case-control anxiety, neuroticism and 

depression (rg=0.71-0.86), irritable bowel syndrome (rg=0.57), coronary artery disease, 

endometriosis, and migraine (rg=0.20-0.27). Gene-based and pathway analyses implicated 

synaptic and axonal processes, with enriched expression in the brain. These findings highlight 

the additional value of a dimensional approach in anxiety genetics.   
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Introduction 

Anxiety disorders are the most prevalent mental health conditions worldwide1 and rates are 

rising2–4. Anxiety is associated with reduced quality of life5, elevated mortality6,7, and is 

frequently comorbid with other mental8–12 and physical13 health conditions, from irritable 

bowel syndrome to cancer. When co-occurring with other conditions, anxiety symptoms can 

exert an independent and sometimes greater impact on quality of life and functioning than the 

primary diagnosis8, as has been reported in autism14 and bipolar disorder15.  

 

Twin and family studies estimate the heritability of anxiety disorders at 20-60%13, with 

measures capturing stable anxiety typically showing higher heritability16. Early case-control 

genome-wide association studies (GWAS), which aggregated across anxiety subtypes, identified 

a handful of risk loci17–19. More recent large-scale efforts, employing a range of analytical 

approaches, have reported between 14 and 51 associated loci20–22. The largest GWAS of anxiety 

cases to date, also by the Anxiety Disorders Working Group of the Psychiatric Genomics 

Consortium (PGC-ANX), identified 58 independent loci from over 120,000 cases23. Across these 

studies, single nucleotide polymorphism (SNP)-based heritability estimates ranged from 5% to 

10%20,22,23. 

 

Fear and worry serve an evolutionary function by promoting vigilance and caution in response 

to potential threats24. Variation in threat sensitivity across individuals may be adaptive at the 

group level, and as such, anxiety symptoms exist in the population along a continuum of 

frequency and severity. Clinical anxiety represents a practical threshold at the upper extreme of 

this distribution, based on levels of distress and functional impairment. GWAS of dimensional 

anxiety using quantitative symptom scores capture genetic variation across the full phenotypic 

range, not only at clinical thresholds. This approach can offer greater statistical power25 and a 

more comprehensive representation of genetics influences on anxiety traits. The degree of 

genetic overlap between dimensional anxiety symptom severity and disorder status has only 

just begun to be explored. A GWAS of a two-item anxiety scale in the European-ancestry 

subsample of the Million Veteran Program (MVP) identified five significant loci26, and 

moderate-to-strong genetic correlations with lifetime anxiety disorder (rg = 0.59 - 0.8713,26). 

However, the brevity of the measure limited the potential to comprehensively capture 

phenotypic variance. Additional support for shared genetic influences across the anxiety 
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continuum, including above and below diagnostically relevant thresholds, comes from the UK 

Biobank, where high genetic correlations were observed between mild, moderate, and severe 

anxiety symptom case-control groupings (rg = 0.76 - 0.9819). Among individuals with lifetime 

anxiety or depression, anxiety symptom severity was also genetically correlated with functional 

impairment ratings (rg = 0.7927), which have clinical relevance.  

 

These findings provide preliminary evidence that a well-powered GWAS of dimensional anxiety 

would identify variants relevant to both symptom severity and clinically defined anxiety. 

Besides the two-item MVP study, previous dimensional anxiety GWAS have incorporated other 

psychiatric or personality traits to maximise statistical power28,29, resulting in findings relating 

to a broader construct than anxiety symptoms specifically. To address this, we performed the 

largest genome-wide association meta-analysis of generalised anxiety disorder (GAD) symptom 

severity to date. We analysed data from 696,563 individuals of inferred European ancestry 

across 14 cohorts from PGC-ANX. Most cohorts used the Generalised Anxiety Disorder 7-item 

scale (GAD-7) or conceptually similar brief self-report measures of recent GAD symptoms. In 

addition to identifying associated loci, we performed variant- and gene-level investigations, 

estimated genetic correlations with relevant traits, and evaluated polygenic score prediction in 

independent samples of European, African, and South Asian ancestry. 

 

 

Results 

 

Genome-wide association meta-analysis 

We performed a genome-wide association meta-analysis of GAD symptom severity in 696,563 

individuals of European ancestry across 14 cohorts from eight countries (see Tables S1-S3 for 

cohort, phenotype, and GWAS details). The analysis identified 82 independent genome-wide 

significant variants (p < 5x10-8) across 76 loci (Fig 1, Fig S1, Table S4). The top signal came from a 

locus within an intron of PCLO on chromosome 7 (lead SNP rs1476548, p = 3.7x10-15, beta = -

0.014), followed by an intergenic locus near the long noncoding RNA RP4-598G3.1 on 

chromosome 1 (lead SNP rs7546305, p = 4.0 x 10-15, beta = -0.014).  
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Of the 76 loci, 17 had no prior associations with internalising trait GWAS, including neuroticism, 

anxiety, or depression, at any variant in linkage disequilibrium (LD) with the lead SNP (r
2
 > 0.1; 

Methods, Table S5a). Forty-one loci were novel for anxiety specifically, measured either as a 

diagnosis or symptom severity phenotype. Of the 58 loci previously identified in the PGC-ANX 

anxiety disorder study
23

, 19 (33%) reached genome-wide significance in the present analysis, 

and a further 33 (57%) showed nominal significance (p < 0.05) in the same direction (Table S5b).

The remaining loci were non-significantly associated but also consistent in directionality. Nine 

of the 14 cohorts included here also contributed to the PGC-ANX anxiety disorders study, 

although cohort sample composition somewhat differed due to the availability of dimensional 

versus diagnostic information. Power calculations
30

 confirmed increased power in the present 

analysis relative to the anxiety disorder study (Table S6). 

 

Fig. 1| Manhattan plot of the genome-wide association meta-analysis of generalised anxiety 

symptom severity (N = 696,563). Variants are represented as points, plotted against their 

respective genomic location and association significance value. The red line indicates the 

genome-wide significant threshold (p < 5x10
-8

).  

 

Heterogeneity tests revealed no significant differences in SNP effects across cohorts (p < 5x10
-

8
). Genetic correlations between sufficiently powered cohorts, estimated using linkage 

disequilibrium score regression (LDSC), ranged from 0.64 to 0.97 (Table S7). As a sensitivity 

analysis, we categorised cohorts by GAD symptom severity measure (e.g. GAD-7; six subgroups) 

and by ascertainment method (‘community’ and ‘clinical’ subgroups) (Table S2). Subgroup 

meta-analyses were performed as per the main analysis, and genetic correlations between 

6 

. 
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subgroups were estimated with LDSC. While most subgroup comparisons were underpowered, 

including that for the ascertainment method, the genetic correlation between the two most 

frequently used measures, GAD-7 and GAD-2, was high (rg = 0.86, SE = 0.031; Table S8).  

 

SNP-based heritability and genetic correlations with external traits  

The SNP-based heritability estimate from SBayesRC was 5.92% (SE = 0.189%). SBayesRC was 

selected due to the known under-estimation of heritability from LDSC31. LDSC32 indicated that 

genomic inflation was largely attributable to polygenicity (intercept = 1.03, SE = 0.010). To 

characterise the broader genetic architecture of GAD symptoms, we used LDSC33 to estimate 

genetic correlations with 105 traits spanning mental and physical health, personality, cognitive, 

and socioeconomic domains (Table S9). Following Bonferroni correction (p < 4.76 x10-4), 63 

associations remained significant (Fig 2; four traits represented by multiple studies were 

excluded).  

 

The strongest correlations were observed with dimensional internalising traits including 

neuroticism, depressive symptoms, and a genetic anxiety factor (rg = 0.84 - 0.86), as well as with 

case-control phenotypes for anxiety and depression (rg = 0.71 - 0.80). Moderate-to-strong 

estimates were also found for self-reported tiredness (rg = 0.74), insomnia (rg = 0.49), irritable 

bowel syndrome (rg = 0.57), and chronic pain (rg = 0.56). Negative correlations were observed 

with socioeconomic status indicators including household income (rg = -0.43). Smaller but 

significant correlations were identified with coronary artery disease, endometriosis, 

hypothyroidism, and migraine (rg = 0.20 - 0.27). Most other associations with physical traits and 

illnesses were weaker and included negative correlations with lung function, resting heart rate, 

and intracranial volume variation, and positive correlations with rheumatoid arthritis and atopic 

dermatitis (absolute rg = 0.06 - 0.13).  
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Fig.2 | Genetic correlations between generalised anxiety symptom severity and a range of traits from 

existing genome-wide associations studies, estimated with LDSC. 

All significant at a Bonferroni-corrected threshold of p < 4.76 x10
-4

. Bars represent 95% confidence 

intervals. PTSD = post-traumatic stress disorder, MDD = major depressive disorder, OCD = obsessive-

compulsive disorder, ADHD = attention deficit/hyperactivity disorder, BMI = adult body mass index, SES 

= socioeconomic status. Forced expiratory volume is a measure of lung function. 

 

8 
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Polygenic risk scores 

To evaluate the within- and cross-ancestry generalisability of our GWAS findings, we generated 

a polygenic risk score (PRS) for GAD symptom severity using SBayesRC34 and tested its 

association with both dimensional and case-control anxiety outcomes in independent samples 

across ancestry groups (Table S10). The PRS significantly explained 2.8% of the variance in 

dimensional anxiety in an independent European ancestry sample (p = 4.2 x 10-23), 1.4% in an 

African ancestry sample (p = 3.9 x 10-6), and 1.2% in a South Asian ancestry sample (p = 2.9 x 10-

6). For case-control anxiety, assuming 20% prevalence, the PRS explained 3.4% (p = 6.2 x 10-6) of 

the variance on the liability scale in a European ancestry sample, 2.6% (p = 1.8 x 10-3) in an 

African ancestry sample, and 2.6% (p = 6.9 x 10-4) in a South Asian ancestry sample. 

 

Positional and functional annotation 

Functionally-informed fine-mapping using PolyFun (v1.0.0)35 and SuSiE (v0.11.92)36 identified 

four putative causal variants with posterior inclusion probabilities (PIP) ≥ 0.95. Two of these 

were index variants for genome-wide significant loci: rs2392289 at locus 31 (PIP = 0.969) and 

rs72676302 at locus 59 (PIP = 0.988). The remaining two variants were located in loci that did 

not reach genome-wide significance. One variant, rs72676302, had a high Combined 

Annotation Dependent Depletion (CADD) score of 19.78, suggesting a deleterious effect (above 

the suggested threshold of 12.3737), although there was little biological evidence that it is 

within a regulatory element (regulomeDB score = 5). Additionally, we identified 27 small 

credible causal sets (< 10 variants each) that cumulatively met the PIP threshold (Table S11).  

 

SNP-level gene annotation was performed using FUMA (v1.6.538) based on positional, 

expression quantitative trait loci (eQTL), and chromatin interaction (Hi-C) mappings (Table S12). 

We identified genes annotated by more than one method, with this convergence providing 

greater support for their involvement. This approach highlighted TMEM106B, which has 

repeatedly been associated with anxiety18,19,23 and also with depression39. In addition, multiple 

genes were identified that have previously been implicated in depression (e.g., SORCS3, ERBB4, 

GRM7, VRK2, DCC, LRFN5, PCLO) and schizophrenia (e.g., ERBB4, VRK2). PCLO, overlapping our 

top locus, was also annotated by eQTL data. MAD1L1, although implicated only by positional 

mapping in our analysis, has been repeatedly associated with anxiety phenotypes in previous 

GWAS17–19,26, further supporting its relevance. While detailed functional information was 
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limited for many of the mapped genes, several are thought to play roles in key 

neurotransmitter systems, including glutamatergic (GRM7, HOMER1), GABAergic (ERBB4), and 

dopaminergic (DRD1) signalling.  

 

Gene-based associations and enrichment 

Gene-based association analysis was conducted using MAGMA40, which aggregates trait-SNP 

associations across all SNPs within a gene while accounting for LD. In total, 200 genes across 82 

independent loci surpassed the Bonferroni-corrected significance threshold (p < 2.5 x 10-6; 

Table S13). The top associated gene was PCLO (p = 2.5 x 10-21), mirroring the SNP-based results.  

 

To assess biological pathways significantly enriched for associations with GAD symptom 

severity, we performed pathway analysis in MAGMA with predefined gene sets (MsigDB 

v2023.1.Hs41; curated and gene ontology terms; Table S14). Three gene sets passed Bonferroni 

correction (p < 2.9 x 10-6): postsynaptic membrane (272 genes, p = 4.3 x 10-8), synaptic 

membrane (384 genes, p = 1.1 x 10-7), and axon (627 genes, p = 5.4 x 10-7). These results were 

unaffected by the exclusion of the MHC region, though the number of genes per set slightly 

decreased. 

 

Gene-tissue expression analysis was conducted using catalogues of gene expression levels 

across different human tissues (Figs S2-5), with a Bonferroni correction applied within each 

tissue set. Among brain samples from 11 developmental stages (BrainSpan), only prenatal 

samples were significant (p = 6.6 x 10-3 and 4.0 x 10-4). In adult tissues (GTEx v842), significant 

enrichment was observed in brain (p = 9.9 x 10-9) and pituitary (p = 9.5 x 10-5) tissues. Analysis 

of more specific tissue types revealed enrichment in 11 brain regions, most strongly in the 

cortex, frontal cortex, cerebellum, anterior cingulate cortex, and nucleus accumbens (all p < 9.3 

x 10-4, Table S15).  

 

Drug targets 

To explore therapeutic relevance, we ran DrugTargetor (v1.343) to identify drug priorities with 

potential utility for clinical anxiety, based on their relevance for GAD symptom severity. Of the 

1500 drugs tested, we identified significant enrichment of anxiety associations for four targets 

of afatinib, a lung cancer growth inhibitor (EGFR, ERBB2, ERBB3, ERBB4; Table S16). This 
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enrichment was primarily driven by the association with ERBB4. At the drug class level, we 

observed significant associations for Anatomical Therapeutic Chemical (ATC) classification N06 

'psychoanaleptics', including antidepressants, and N02A ‘opioids’ (Bonferroni-adjusted p-value 

< 0.05; Table S17). Both classes include drugs that have been used clinically to treat anxiety44. 

 

 

Discussion 

In this genome-wide association meta-analysis of 696,563 individuals from 14 cohorts, we 

identified 82 genome-wide significant variants across 76 loci associated with dimensional 

measures of GAD symptom severity. This represents the largest number of genetic associations 

reported to date with anxiety symptoms. Approximately half of the identified loci replicated 

associations reported in previous anxiety GWAS19–23,45, while the remainder were novel.  

 

The strongest association was estimated for rs1476548 within PCLO, which was also implicated 

through eQTL mapping and gene-based association testing. PCLO encodes a protein involved in 

regulating presynaptic structure and neurotransmitter release. This gene has long been of 

interest in major depressive disorder (MDD46), with recent evidence also linking it to anxiety 

disorders20,23. Another gene of interest from our analysis was SORCS3, which was also 

supported by multiple lines of evidence in the recent PGC-ANX case-control anxiety GWAS23. 

SORCS3 plays a role in postsynaptic functioning and glutamate receptor regulation, particularly 

in the hippocampus47. It has been linked to memory and learning processes, specifically 

synaptic depression and fear extinction48, as well as mental health and neurodevelopmental 

conditions including MDD, Tourette syndrome, attention-deficit/hyperactivity disorder, and 

autism49,50.  

 

In contrast to traditional case-control phenotyping, which aims to maximise clinical specificity 

through diagnostic thresholds, our approach leveraged the full spectrum of symptom 

variability, increasing power for discovery51 and capturing genetic risk relevant to both 

subclinical and clinical presentations. The key differences between clinical diagnoses and 

symptom severity measures relate to the presence of distress and impairment, and symptom 

duration. While subclinical symptoms can still cause distress and impairment, this is not always 

true for lower levels of anxiety severity, potentially contributing to some diagnosis-specific 
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genetic variance. Similarly, diagnostic tools often assess lifetime occurrence and require 

symptoms to be present for a minimum period of time (six months for GAD), whereas symptom 

severity scales typically capture recent experiences (e.g. past two weeks), introducing greater 

susceptibility to transient fluctuations and measurement noise. Consistent with this, GWAS of 

depression symptom severity typically yield lower SNP-based heritability estimates than case-

control analyses52–54. We aimed to partially address and control for temporal fluctuations and 

better approximate a stable underlying trait16 by incorporating assessments from multiple 

timepoints into our analysis, where available. Our SNP-based heritability estimate (5.2%) aligns 

with previous GWAS of GAD symptom severity26,28 but remains lower than liability scale 

estimates from case-control anxiety meta-analyses23. Despite this, the strong genetic 

correlation observed between our phenotype and case-control anxiety suggests that GAD 

symptom severity captures much of the same genetic risk. This finding is consistent with a 

recent analysis of obsessive compulsive symptoms55. Dimensional, symptom-based approaches 

may be particularly well-suited to genetic studies of anxiety, given the high burden of anxiety 

symptoms observed across other mental health conditions8–11. In this context, efforts to isolate 

‘pure’ anxiety cases may be both methodologically challenging and reflect an unusual clinical 

phenotype that is invalid for most individuals with anxiety.  

 

There was a broad range of significant genetic correlations across both mental and physical 

health conditions, mirroring the frequent co-occurrence with anxiety symptoms and pleiotropic 

effects. A strong genetic correlation was observed with neuroticism, a well-established risk 

factor for anxiety56, though this may also reflect conceptual and item-level overlap between the 

measures used. Many of the observed correlations align with findings from an anxiety factor 

GWAS22, including strong associations with irritable bowel syndrome and chronic pain, and a 

moderate association with migraine. These genetic correlations do not necessarily imply 

horizontal pleiotropy but could arise from the experience of these conditions eliciting 

uncertainty and worry, thereby contributing to anxiety.  

 

Polygenic scores derived from our genome-wide association meta-analysis demonstrated 

within- and cross-ancestry generalisability, significantly explaining 1.2% to 2.8% of the variance 

in GAD symptom severity in European, African, and South Asian ancestry samples. This supports 

a degree of shared genetic influence across these populations, although ancestry-specific 

modelling remains necessary for a more robust investigation. Across these ancestries, the PRS 
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also accounted for 2.5% to 3.5% of the variance in case-control anxiety on the liability scale. 

While this exceeds the 0.5% to 2.3% range reported in the PGC-ANX case-control analysis23, 

direct comparisons are limited by methodological differences in PRS construction and target 

sample composition. Nonetheless, these findings provide additional evidence that dimensional 

phenotyping can effectively capture genetic signal relevant to clinical anxiety. 

 

The GAD symptom severity measures and ascertainment methods varied across contributing 

cohorts, although most assessed symptoms using the GAD-7. While widely adopted across 

clinical and research contexts, the GAD-7 does not comprehensively assess all DSM-5 GAD 

symptoms - omitting sleep and concentration problems - and is not designed to capture 

symptoms of fear-based anxiety (i.e. phobias, social anxiety disorder) or panic disorder. This 

limits the generalisability of our findings across anxiety disorders, particularly in light of 

evidence for partially distinct phenotypic and genetic contributions to GAD compared with fear-

based disorders57,58. Expanding future studies to incorporate a broader range of anxiety 

symptom measures will enable more robust, transdiagnostic translation of findings. Our 

subgroup analyses based on measure and ascertainment method, were largely underpowered 

to reliably estimate SNP-based heritability or correlations. Although sufficiently powered 

comparisons indicated high genetic overlap, we cannot be certain that all cohorts captured the 

same underlying genetic architecture. While population-based cohorts allow assessment of the 

full range of symptoms, the measures used typically better distinguish variation at the upper 

end of the distribution. This results in highly skewed symptom severity scores, as most 

participants report few or no symptoms, whereas individuals in clinical cohorts typically report 

more symptoms. Combining these sources introduces some heterogeneity but can help yield a 

more normally distributed phenotype for GWAS analysis, which may have improved statistical 

power for detecting associations in our study.  

 

Our dimensional GWAS of GAD symptom severity identified more genome-wide significant loci 

than a slightly larger and mostly overlapping case-control anxiety study (N = 852,222; 122,341 

cases)23, with many loci replicated across the two methods. This aligns with expectations under 

the liability-threshold model when considering common conditions such as anxiety, whereby 

dimensional traits generally offer greater statistical power than case-control designs of equal 

sample size51. Beyond identifying the largest number of anxiety-associated loci to date, our 

results implicate key neurobiological pathways, including synaptic function and 
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neurotransmission, and notable genes such as PCLO and SORCS3. These findings demonstrate 

that a dimensional anxiety phenotype can reveal biologically meaningful signals that 

complements insights from case-control designs. Clinically ascertained samples remain 

essential for identifying disorder-specific biology and mapping genetic risk to diagnostic 

presentations, however, obtaining clinical cases at sufficient scale for binary genome-wide 

analyses is challenging. Although electronic health records offer an efficient option, these are 

limited to individuals seeking and receiving medical attention. Dimensional, symptom-based 

approaches within biobanks and population studies therefore offer a promising scalable 

alternative for advancing the field of anxiety genetics. Moving forward, the combination of 

these with deeply phenotyped clinical cohorts will be crucial for translating genetic insights into 

diagnostic and therapeutic advances. Together, these approaches can elucidate the biological 

continuum of anxiety, from healthy stress responses to debilitating disorder. Given the high and 

rising rates of anxiety, especially in young adults, it is more important than ever to improve our 

ability to identify and understand sources of risk. Despite its public health impact, progress in 

anxiety genetics lags behind other major mental health conditions. We hope our findings 

encourage a new wave of genome-wide investigations leveraging existing but potentially 

underutilised anxiety severity data in genotyped cohorts, accelerating our progress in 

understanding the genetic architecture of anxiety.  
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Methods 

 

Participants and measures 

We meta-analysed data from 14 international cohorts (N = 696,563) within PGC-ANX that had 

assessed anxiety using dimensional measures. The majority of the sample (70%) had completed 

the GAD-7, or closely related brief self-report measures assessing recent anxiety symptoms. The 

remaining 30% used other brief self-report anxiety scales (Table S1), each available in at least 

3,000 individuals. We analysed total sum scores, with higher scores indicating greater severity 

of symptoms. If participants were missing data on <25% of measure items, the missing scores 

were imputed with the participant’s mean score of the other items. Participants with ≥25% 

missing data were excluded from analysis. Several cohorts had assessed anxiety symptoms on 

two or more occasions. Longitudinal twin studies have shown that symptom stability is 

primarily driven by genetic factors16,59,60 and stability extracted from repeated assessments 

yields higher heritability estimates than single timepoints16. For cohorts with anxiety 

assessments from three or more timepoints (12% of the sample), a latent factor was created in 

R with the package lavaan
61, the predict function and an ML estimator. For cohorts with two 

timepoints (45%), a mean score was calculated. Scores were standardised to have a mean of 

zero and a standard deviation of one. Given the high comorbidity of anxiety and other mental 

health conditions, no additional exclusions were applied beyond those defined by each study. 

For two cohorts - GLAD+ and the UK Biobank - individual-level data were merged prior to the 

GWAS. Participants from clinical cohorts had been recruited based on a lifetime history of 

depression or anxiety, as assessed by self-reported diagnostic questionnaires. 

 

Meta-analysis 

Table S3 provides details of the studies that contributed to this meta-analysis, which were: 

Australian Genetics of Depression Study (AGDS)62, Avon Longitudinal Study of Parents and 

Children (ALSPAC)63,64, CoLaus|PsyCoLaus65, Estonian Biobank66, Generation Scotland67, NIHR 

Bioresource Genetic Links to Anxiety and Depression Study (GLAD+68), Lifelines69, MEGA 

TRR5870, Million Veteran Program26, Norwegian Mother, Father, and Child Cohort Study71, 

Providing Tools for Effective Care and Treatment of Anxiety Disorders (PROTECT-AD72), Twins 

Early Development Study (TEDS)73, Tracking Adolescents’ Individual Lives’ Survey (TRAILS74), and 

UK Biobank75. Each cohort performed genotyping using microarray platforms and imputed 
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genotypes using ancestry matched panels, primarily Haplotype Reference Consortium76. 

Rigorous quality control procedures were applied, including filters on sample and variant call 

rates, sex concordance, and excessive heterozygosity (full details in Table S3). Alongside 13 

cohorts, we included one set of pre-existing summary statistics from an analysis in the MVP, 

obtained through the database of Genotypes and Phenotypes (dbGaP; phs001672). Each group 

performed a genome-wide association analysis of GAD symptom severity, with most adopting a 

mixed linear model approach and retaining related individuals. Where applicable, covariates 

such as ancestry principal components and genotyping batch were included. All resulting 

summary statistics were on the GRCh37 genome assembly (b37/Hg19). Prior to meta-analysis, 

variant-level quality control was performed across the summary statistics, excluding those with 

minor allele frequency (MAF) <1% or imputation accuracy score <0.6. The meta-analysis was 

conducted in METAL77 using an inverse-variance weighted, standard-error based approach. A 

total of 7,765,325 autosomal SNPs were included. X-chromosome data was analysed from six 

cohorts, contributing 241,754 variants.  

 

Heterogeneity across cohorts was assessed by inspecting the heterogeneity p-values from 

METAL. We attempted to estimate genetic correlations between contributing cohorts using 

LDSC33 but most pairwise comparisons were not sufficiently powered (i.e. heritability z-scores 

<U4 for one or both cohorts78) to draw conclusions.  

 

The inclusion of clinical alongside community-based cohorts increased our statistical power by 

offering greater representation across the full range of the anxiety symptom severity, as 

evidenced in a recent depression GWAS79. However, due to the risk of bias or confounding from 

differences in study design and phenotyping we performed subgroup meta-analyses stratified 

by anxiety measure and excluding clinical cohorts (Table S2). Meta-analyses of the measure and 

ascertainment subgroups were also performed in METAL, and genetic correlations between the 

groups were estimated using LDSC33.  

 

To identify LD independent significant SNPs and loci, clumping was performed in FUMA38 

(v1.6.5). The r2 threshold for independent significant SNPs was 0.1, and for lead SNPs was 0.05, 

within a 500kb window. Genome-wide significance was defined using the conventional 

threshold (p < 5x10-8).  
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To determine the novelty of our results, we cross-referenced significant loci with published trait 

associations from the GWAS Catalog80 using LDTrait81, applying an r2 threshold of > 0.1 and a 

500kb window. Novelty was strictly defined as having no prior associations with internalising 

traits including anxiety, depression, neuroticism, and worry. To supplement this, we compared 

our results with recent anxiety and depression studies not yet available in the GWAS 

Catalog20,22,23,79. Overlapping significant loci were identified with BEDtools82 and LD assessed 

using a threshold of r2 > 0.1. The investigation of novelty also revealed the extent to which our 

results replicated previous findings. We also determined novelty specifically for anxiety, 

whether assessed as symptom severity or a case-control phenotype. Of the 14 cohorts in our 

meta-analysis, most overlap with prior case-control anxiety meta-analyses, with the exception 

of GLAD+, Lifelines, ProtectAD, TEDS, and MEGA (approximate N = 110,000). In some instances, 

the cohort sample composition differs due to the availability of dimensional versus diagnostic 

information.  

 

SNP-based heritability and genetic correlations with external traits  

We estimated SNP-based heritability via SBayesRC34. This provided an estimate of the 

proportion of variance in dimensional anxiety attributable to variation in the common SNPs 

present in this meta-analysis. We used LDSC32 to inspect the genomic inflation factor (λGC) and 

intercept to evaluate the contribution of potential confounding relative to polygenicity. Genetic 

correlations were also computed using LDSC with 105 GWAS summary statistics covering a 

broad range of phenotypes and applying a Bonferroni-corrected p-value threshold of 4.76x10-4.  

 

Polygenic risk scores 

To evaluate the within and cross-ancestry validity of our GWAS, we calculated GAD symptom 

severity polygenic risk scores (PRS) in independent samples from the UK Biobank75 and 

Prospective Imaging Study of Ageing (PISA)83. We then performed regressions between our PRS 

and dimensional anxiety, using GAD-7 scores, as well as case-control anxiety, as defined by a 

self-reported diagnostic questionnaire or self-report of a diagnosis from a health professional. 

Specifically, we used SBayesRC34 to calculate PRS in European, African, and South-Asian 

ancestry samples, excluding related individuals. SBayesRC is a Bayesian regression method that 

uses GWAS summary statistics to estimate SNP effect sizes while accounting for LD and 

polygenic architecture. It extends the SBayesR framework by incorporating functional 
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annotations or prior biological information, improving the detection of likely causal variants and 

enhancing predictive accuracy for complex traits. We conducted linear regressions to assess the 

variance explained in GAD symptom severity by the PRS in each sample (European N = 3,452; 

African N = 1,581; South Asian N = 1,813). For case-control status, we performed logistic 

regressions and calculated Nagelkerke’s R2 for our PRS, assuming a population prevalence of 

20% (European total n = 3107, case n = 407; African total n = 1,303, case n = 218; South Asian 

total n = 1,549, case n = 265). All regressions included the first 10 ancestry-specific PCs and 

genotyping batch as covariates. 

 

Positional and functional annotation 

We used PolyFun35 to estimate per-SNP heritabilities, leveraging a regularised extension of 

stratified-LDSC (s-LDSC) applied to the v.2.2.UKB baseline-LF model annotations, which captures 

heritability enrichment related to allele frequency, LD and variant function. These prior causal 

estimates were then used for fine-mapping in SuSiE36, limiting to a maximum of one causal SNP 

per locus. We extracted annotations at a Posterior Inclusion Probability (PIP) threshold of ≥ 0.95 

and created credible causal sets containing the minimum set of ranked variants that 

cumulatively met this threshold. Unlike standard definitions of credible causal sets in SuSiE, we 

did not require a minimum pairwise r2 between variants in a set, as the PolyFun + SuSiE pipeline 

does not incorporate LD estimates. 

 

We performed SNP-level gene annotation using FUMA38 (v1.6.5), integrating three 

complementary methods: positional mapping (based on physical proximity to genes), 

expression quantitative trait loci (eQTL) mapping (linking variants to gene expression), and 

chromatin interaction mapping (using Hi-C data to identify regulatory interactions). eQTL 

mapping used significant SNP-gene pairs and eQTLs from the brain tissue datasets GTEx v8 

Brain42 (13 regions) and BRAINEAC84 (10 regions), and average expressions across these, 

applying a false discovery rate (FDR) threshold of < 0.05. Chromatin interaction mapping 

employed Hi-C brain tissue data (dorso-lateral prefrontal cortex, hippocampus, left and right 

ventricles)85 and adult and foetal cortex86, with an FDR threshold of p < 1x10-6. These methods 

differ in their underlying biological rationale and may implicate different genes. Genes 

identified by two or more mapping approaches were therefore highlighted, as convergence 

across the methods increased our confidence in the potential functional relevance of a gene.  
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Gene-based associations and enrichment 

Gene-based association, gene-set, and gene-tissue expression enrichment analyses were 

performed in MAGMA40 (v1.08) via FUMA38 (v1.6.5). These analyses aimed to identify genes 

associated with GAD symptom severity, biological pathways enriched for associated genes, and 

relevant tissues where genes are preferentially expressed, offering insight into the potential 

biological mechanisms underlying our findings. For gene-based associations, we tested 19,954 

genes, applying a Bonferroni-corrected significance threshold of p < 2.51x10-6. SNPs were 

mapped to genes using a 35kb upstream and 10kb downstream window. Gene-set analyses 

were performed using 6,494 curated gene sets (‘c2.all’) and 10,529 gene-ontology (GO) terms 

(‘c5.bp’, ‘c5.cc’ and ‘c5.mf’) from the Molecular Signatures Database (MSigDB41; v2023.1.Hs). 

Significance was determined by a Bonferroni-corrected threshold of p < 2.94x10-6. For tissue 

enrichment we tested relationships between trait-associated genes and gene expression in 

human tissues, using data from BrainSpan (brain samples from 11 general developmental 

stages and 29 specified ages) and GTEx v8 (covering 30 general and 54 specific tissue types).  

 

Drug targets 

We examined whether genes associated with GAD symptom severity were associated with 

individual drugs and drug classes using the DrugTargetor43 method (November 2020 update). 

DrugTargetor integrates MAGMA gene-level association results with curated drug-gene 

interaction databases (ChEMBL87,88 and DGIdb89). We used MAGMA (v1.10) to prioritise 

associated genes within windows 35kb upstream and 10kb downstream. We hypothesised drug 

action within the nervous system, a maximum of 1500 unique drugs and 200 drug classes. To 

assess the enrichment of drug classes we calculated the area under the enrichment curve 

(AUC), where 50% indicates random enrichment and 100% optimal enrichment and AUC 

significance was assessed using one-sided Wilcoxon-Mann-Whitney tests.  
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Data and code availability 

Summary statistics will be made available on the PGC data-download page 

(https://pgc.unc.edu/for-researchers/download-result). Ahead of publication we will make 

analytic code available via Github.  
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